Search results
Results From The WOW.Com Content Network
In mathematics, the capacity of a set in Euclidean space is a measure of the "size" of that set. Unlike, say, Lebesgue measure , which measures a set's volume or physical extent, capacity is a mathematical analogue of a set's ability to hold electrical charge .
The volume of a container is generally understood to be the capacity of the container; i.e., the amount of fluid (gas or liquid) that the container could hold, rather than the amount of space the container itself displaces. By metonymy, the term "volume" sometimes is used to refer to the corresponding region (e.g., bounding volume). [2] [3]
A simple example is a volume (how big an object occupies a space) as a measure. In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and ...
Capacity of a container, closely related to the volume of the container Capacity of a set , in Euclidean space, the total charge a set can hold while maintaining a given potential energy Capacity factor , the ratio of the actual output of a power plant to its theoretical potential output
6 volumetric measures from the mens ponderia in Pompeii, a municipal institution for the control of weights and measures (79 A. D.). A unit of volume is a unit of measurement for measuring volume or capacity, the extent of an object or space in three dimensions.
The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m −1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus
Some SI units of volume to scale and approximate corresponding mass of water. A litre is a cubic decimetre, which is the volume of a cube 10 centimetres × 10 centimetres × 10 centimetres (1 L ≡ 1 dm 3 ≡ 1000 cm 3). Hence 1 L ≡ 0.001 m 3 ≡ 1000 cm 3; and 1 m 3 (i.e. a cubic metre, which is the SI unit for volume) is exactly 1000 L.
As the local density of a packing in an infinite space can vary depending on the volume over which it is measured, the problem is usually to maximise the average or asymptotic density, measured over a large enough volume. For equal spheres in three dimensions, the densest packing uses approximately 74% of the volume.