Search results
Results From The WOW.Com Content Network
A CMOS transistor NAND element. V dd denotes positive voltage.. In CMOS logic, if both of the A and B inputs are high, then both the NMOS transistors (bottom half of the diagram) will conduct, neither of the PMOS transistors (top half) will conduct, and a conductive path will be established between the output and Vss (ground), bringing the output low.
This schematic diagram shows the arrangement of NOT gates within a standard 4049 CMOS hex inverting buffer. The inverter is a basic building block in digital electronics. Multiplexers, decoders, state machines, and other sophisticated digital devices may use inverters. The hex inverter is an integrated circuit that contains six inverters.
In digital electronics, a NAND gate (NOT-AND) is a logic gate which produces an output which is false only if all its inputs are true; thus its output is complement to that of an AND gate. A LOW (0) output results only if all the inputs to the gate are HIGH (1); if any input is LOW (0), a HIGH (1) output results.
The classical analog of the CNOT gate is a reversible XOR gate. How the CNOT gate can be used (with Hadamard gates) in a computation.. In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer.
A depletion-load NMOS NAND gate. In integrated circuits, depletion-load NMOS is a form of digital logic family that uses only a single power supply voltage, unlike earlier NMOS (n-type metal-oxide semiconductor) logic families that needed more than one different power supply voltage.
Ring oscillator test structures fabricated on silicon using p-type MOSFETs of different sizes. A schematic of a simple 3-inverter ring oscillator whose output frequency is 1/(6×inverter delay). A ring oscillator is a device composed of an odd number of NOT gates in a ring, whose output oscillates between two voltage levels, representing true ...
A NOT gate, for example, can be constructed from a Toffoli gate by setting the three input bits to {a, 1, 1}, making the third output bit (1 XOR (a AND 1)) = NOT a; (a AND b) is the third output bit from {a, b, 0}. Essentially, this means that one can use Toffoli gates to build systems that will perform any desired Boolean function computation ...
However, the set { AND, OR} is incomplete, due to its inability to express NOT. A gate (or set of gates) that is functionally complete can also be called a universal gate (or a universal set of gates). In a context of propositional logic, functionally complete sets of connectives are also called (expressively) adequate. [3]