When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degenerate conic - Wikipedia

    en.wikipedia.org/wiki/Degenerate_conic

    In geometry, a degenerate conic is a conic (a second-degree plane curve, defined by a polynomial equation of degree two) that fails to be an irreducible curve.This means that the defining equation is factorable over the complex numbers (or more generally over an algebraically closed field) as the product of two linear polynomials.

  3. Degeneracy (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(mathematics)

    In inversive geometry, a line is a degenerate case of a circle, with infinite radius. Two parallel lines also form a degenerate parabola. A line segment can be viewed as a degenerate case of an ellipse in which the semiminor axis goes to zero, the foci go to the endpoints, and the eccentricity goes to one.

  4. Linear system of conics - Wikipedia

    en.wikipedia.org/wiki/Linear_system_of_conics

    In algebraic geometry, the conic sections in the projective plane form a linear system of dimension five, as one sees by counting the constants in the degree two equations. The condition to pass through a given point P imposes a single linear condition, so that conics C through P form a linear system of dimension 4.

  5. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    If the conic is non-degenerate, the conjugates of a point always form a line and the polarity defined by the conic is a bijection between the points and lines of the extended plane containing the conic (that is, the plane together with the points and line at infinity). If the point p lies on the conic Q, the polar line of p is the tangent line ...

  6. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    Being tangent to five given lines also determines a conic, by projective duality, but from the algebraic point of view tangency to a line is a quadratic constraint, so naive dimension counting yields 2 5 = 32 conics tangent to five given lines, of which 31 must be ascribed to degenerate conics, as described in fudge factors in enumerative ...

  7. Cramer's theorem (algebraic curves) - Wikipedia

    en.wikipedia.org/wiki/Cramer's_theorem_(algebraic...

    Likewise, a non-degenerate conic (polynomial equation in x and y with the sum of their powers in any term not exceeding 2, hence with degree 2) is uniquely determined by 5 points in general position (no three of which are on a straight line). The intuition of the conic case is this: Suppose the given points fall on, specifically, an ellipse.

  8. Enumerative geometry - Wikipedia

    en.wikipedia.org/wiki/Enumerative_geometry

    As an example, count the conic sections tangent to five given lines in the projective plane. [4] The conics constitute a projective space of dimension 5, taking their six coefficients as homogeneous coordinates, and five points determine a conic, if the points are in general linear position, as passing through a given point imposes a linear ...

  9. Cayley–Bacharach theorem - Wikipedia

    en.wikipedia.org/wiki/Cayley–Bacharach_theorem

    A special case is Pascal's theorem, in which case the two cubics in question are all degenerate: given six points on a conic (a hexagon), consider the lines obtained by extending opposite sides – this yields two cubics of three lines each, which intersect in 9 points – the 6 points on the conic, and 3 others. These 3 additional points lie ...