When.com Web Search

  1. Ad

    related to: geometry non rigid transformation

Search results

  1. Results From The WOW.Com Content Network
  2. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    Any object will keep the same shape and size after a proper rigid transformation. All rigid transformations are examples of affine transformations. The set of all (proper and improper) rigid transformations is a mathematical group called the Euclidean group, denoted E(n) for n-dimensional Euclidean spaces. The set of rigid motions is called the ...

  3. Geometric transformation - Wikipedia

    en.wikipedia.org/wiki/Geometric_transformation

    Geometric transformations can be distinguished into two types: active or alibi transformations which change the physical position of a set of points relative to a fixed frame of reference or coordinate system (alibi meaning "being somewhere else at the same time"); and passive or alias transformations which leave points fixed but change the ...

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Consider a rigid body, with three orthogonal unit vectors fixed to its body (representing the three axes of the object's local coordinate system). The basic problem is to specify the orientation of these three unit vectors, and hence the rigid body, with respect to the observer's coordinate system, regarded as a reference placement in space.

  5. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...

  6. Geometric rigidity - Wikipedia

    en.wikipedia.org/wiki/Geometric_rigidity

    The information in this section can be found in. [1] The rigidity matrix can be viewed as a linear transformation from | | to | |.The domain of this transformation is the set of | | column vectors, called velocity or displacements vectors, denoted by ′, and the image is the set of | | edge distortion vectors, denoted by ′.

  7. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    Some transformations that are non-linear on an n-dimensional Euclidean space R n can be represented as linear transformations on the n+1-dimensional space R n+1. These include both affine transformations (such as translation) and projective transformations. For this reason, 4×4 transformation matrices are widely used in 3D computer graphics.

  8. Similarity (geometry) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(geometry)

    When r = 1 a similarity is called an isometry (rigid transformation). Two sets are called similar if one is the image of the other under a similarity. As a map ⁠ f : R n → R n , {\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} ^{n},} ⁠ a similarity of ratio r takes the form

  9. Transformation geometry - Wikipedia

    en.wikipedia.org/wiki/Transformation_geometry

    In mathematics, transformation geometry (or transformational geometry) is the name of a mathematical and pedagogic take on the study of geometry by focusing on groups of geometric transformations, and properties that are invariant under them.