Ad
related to: fermat's last theorem wiki
Search results
Results From The WOW.Com Content Network
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]
Fermat's Last Theorem, formulated in 1637, states that no three positive integers a, b, and c can satisfy the equation + = if n is an integer greater than two (n > 2).. Over time, this simple assertion became one of the most famous unproved claims in mathematics.
Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b.
Sir Andrew John Wiles (born 11 April 1953) is an English mathematician and a Royal Society Research Professor at the University of Oxford, specialising in number theory.He is best known for proving Fermat's Last Theorem, for which he was awarded the 2016 Abel Prize and the 2017 Copley Medal and for which he was appointed a Knight Commander of the Order of the British Empire in 2000. [1]
Fermat's Last Theorem is a popular science book (1997) by Simon Singh.It tells the story of the search for a proof of Fermat's Last Theorem, first conjectured by Pierre de Fermat in 1637, and explores how many mathematicians such as Évariste Galois had tried and failed to provide a proof for the theorem.
The works of the 17th-century mathematician Pierre de Fermat engendered many theorems. Fermat's theorem may refer to one of the following theorems: Fermat's Last Theorem, about integer solutions to a n + b n = c n; Fermat's little theorem, a property of prime numbers; Fermat's theorem on sums of two squares, about primes expressible as a sum of ...
To prove the Fermat's Last Theorem for a strong irregular prime p is more difficult (since Kummer proved the first case of Fermat's Last Theorem for B-regular primes, Vandiver proved the first case of Fermat's Last Theorem for E-regular primes), the most difficult is that p is not only a strong irregular prime, but 2p + 1, 4p + 1, 8p + 1, 10p ...
He invented a factorization method—Fermat's factorization method—and popularized the proof by infinite descent, which he used to prove Fermat's right triangle theorem which includes as a corollary Fermat's Last Theorem for the case n = 4. Fermat developed the two-square theorem, and the polygonal number theorem, which states that each ...