When.com Web Search

  1. Ad

    related to: foundations of geometry proof of care for nursing research questions

Search results

  1. Results From The WOW.Com Content Network
  2. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Based on ancient Greek methods, an axiomatic system is a formal description of a way to establish the mathematical truth that flows from a fixed set of assumptions. Although applicable to any area of mathematics, geometry is the branch of elementary mathematics in which this method has most extensively been successfully applied.

  3. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Also, the 4th problem concerns the foundations of geometry, in a manner that is now generally judged to be too vague to enable a definitive answer. The 23rd problem was purposefully set as a general indication by Hilbert to highlight the calculus of variations as an underappreciated and understudied field.

  4. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    The Foundations of Geometry, 2nd ed. Chicago: Open Court. Laura I. Meikle and Jacques D. Fleuriot (2003), Formalizing Hilbert's Grundlagen in Isabelle/Isar Archived 2016-03-04 at the Wayback Machine , Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science, Volume 2758/2003, 319-334, doi : 10.1007/10930755_21

  5. Hilbert's second problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_second_problem

    As a nowadays common interpretation, a positive solution to Hilbert's second question would in particular provide a proof that Peano arithmetic is consistent. There are many known proofs that Peano arithmetic is consistent that can be carried out in strong systems such as Zermelo–Fraenkel set theory .

  6. Category:Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Foundations_of...

    Pages in category "Foundations of geometry" The following 15 pages are in this category, out of 15 total. This list may not reflect recent changes. ...

  7. Foundations of mathematics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_mathematics

    Foundations of mathematics are the logical and mathematical framework that allows the development of mathematics without generating self-contradictory theories, and, in particular, to have reliable concepts of theorems, proofs, algorithms, etc. This may also include the philosophical study of the relation of this framework with reality. [1]

  8. History of geometry - Wikipedia

    en.wikipedia.org/wiki/History_of_geometry

    In geometry, there was a clear need for a new set of axioms, which would be complete, and which in no way relied on pictures we draw or on our intuition of space. Such axioms, now known as Hilbert's axioms, were given by David Hilbert in 1894 in his dissertation Grundlagen der Geometrie (Foundations of Geometry).

  9. Birkhoff's axioms - Wikipedia

    en.wikipedia.org/wiki/Birkhoff's_axioms

    These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protractor. Since the postulates build upon the real numbers, the approach is similar to a model-based introduction to Euclidean geometry. Birkhoff's axiomatic system was utilized in the secondary-school textbook by Birkhoff and Beatley. [2]