When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Complete metric space - Wikipedia

    en.wikipedia.org/wiki/Complete_metric_space

    The space C [a, b] of continuous real-valued functions on a closed and bounded interval is a Banach space, and so a complete metric space, with respect to the supremum norm. However, the supremum norm does not give a norm on the space C (a, b) of continuous functions on (a, b), for it may contain unbounded functions.

  3. Caristi fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Caristi_fixed-point_theorem

    In mathematics, the Caristi fixed-point theorem (also known as the Caristi–Kirk fixed-point theorem) generalizes the Banach fixed-point theorem for maps of a complete metric space into itself. Caristi's fixed-point theorem modifies the ε {\displaystyle \varepsilon } - variational principle of Ekeland (1974, 1979).

  4. Completely metrizable space - Wikipedia

    en.wikipedia.org/wiki/Completely_metrizable_space

    The distinction between a completely metrizable space and a complete metric space lies in the words there exists at least one metric in the definition of completely metrizable space, which is not the same as there is given a metric (the latter would yield the definition of complete metric space). Once we make the choice of the metric on a ...

  5. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    Informally, a metric space is complete if it has no "missing points": every sequence that looks like it should converge to something actually converges. To make this precise: a sequence (x n) in a metric space M is Cauchy if for every ε > 0 there is an integer N such that for all m, n > N, d(x m, x n) < ε.

  6. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    In a metric space, we can define bounded sets and Cauchy sequences. A metric space is called complete if all Cauchy sequences converge. Every incomplete space is isometrically embedded, as a dense subset, into a complete space (the completion). Every compact metric space is complete; the real line is non-compact but complete; the open interval ...

  7. Banach fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Banach_fixed-point_theorem

    In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces and provides a constructive method to find those fixed points.

  8. Completeness of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Completeness_of_the_real...

    In mathematical analysis, Cauchy completeness can be generalized to a notion of completeness for any metric space. See complete metric space. For an ordered field, Cauchy completeness is weaker than the other forms of completeness on this page. But Cauchy completeness and the Archimedean property taken together are equivalent to the others.

  9. Metrizable space - Wikipedia

    en.wikipedia.org/wiki/Metrizable_space

    In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space.That is, a topological space (,) is said to be metrizable if there is a metric: [,) such that the topology induced by is . [1] [2] Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable.