Search results
Results From The WOW.Com Content Network
Proposition 2: The area of circles is proportional to the square of their diameters. [3] Proposition 5: The volumes of two tetrahedra of the same height are proportional to the areas of their triangular bases. [4] Proposition 10: The volume of a cone is a third of the volume of the corresponding cylinder which has the same base and height. [5]
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...
Floor area ratio (FAR) is the ratio of a building's total floor area (gross floor area) to the size of the piece of land upon which it is built. It is often used as one of the regulations in city planning along with the building-to-land ratio. [ 1 ]
Structural engineers generally consider a skyscraper as slender if the height:width ratio exceeds 10:1 or 12:1. Slim towers require the adoption of specific measures to counter the high strengths of wind in the vertical cantilever , like including additional structures to endow greater rigidity to the building or diverse types of tuned mass ...
The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that