When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...

  3. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Bernoulli's equation: p constant is the total pressure at a point on a streamline + ... = volume density of the body forces acting on the fluid

  4. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    q = ⁠ 1 / 2 ⁠ ρv 2 is dynamic pressure, h = z + ⁠ p / ρg ⁠ is the piezometric head or hydraulic head (the sum of the elevation z and the pressure head) [11] [12] and; p 0 = p + q is the stagnation pressure (the sum of the static pressure p and dynamic pressure q). [13] The constant in the Bernoulli equation can be normalized.

  5. Pressure-correction method - Wikipedia

    en.wikipedia.org/wiki/Pressure-correction_method

    () then provides the governing equation for pressure computation. The idea of pressure-correction also exists in the case of variable density and high Mach numbers, although in this case there is a real physical meaning behind the coupling of dynamic pressure and velocity as arising from the continuity equation

  6. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Then for an ideal gas the compressible Euler equations can be simply expressed in the mechanical or primitive variables specific volume, flow velocity and pressure, by taking the set of the equations for a thermodynamic system and modifying the energy equation into a pressure equation through this mechanical equation of state. At last, in ...

  7. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    Δp is the pressure difference between the two ends, L is the length of pipe, μ is the dynamic viscosity, Q is the volumetric flow rate, R is the pipe radius, A is the cross-sectional area of pipe. The equation does not hold close to the pipe entrance. [8]: 3 The equation fails in the limit of low viscosity, wide and/or short pipe.

  8. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .

  9. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    Here the pressure P D is referred to as dynamic pressure due to the kinetic energy of the fluid experiencing relative flow velocity u. This is defined in similar form as the kinetic energy equation: P D = 1 2 ρ u 2 {\displaystyle P_{\rm {D}}={\frac {1}{2}}\rho u^{2}}