Ad
related to: 4 less 3 is what product of 7 and 8 in multiplication
Search results
Results From The WOW.Com Content Network
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
The carry-less product of two binary numbers is the result of carry-less multiplication of these numbers. This operation conceptually works like long multiplication except for the fact that the carry is discarded instead of applied to the more significant position.
In prehistoric time, quarter square multiplication involved floor function; that some sources [7] [8] attribute to Babylonian mathematics (2000–1600 BC). Antoine Voisin published a table of quarter squares from 1 to 1000 in 1817 as an aid in multiplication.
Like in multiplication shown before, the numbers are read from right to left and add the diagonal numbers from top-right to left-bottom (6 + 0 = 6; 3 + 2 = 5; 1 + 6 = 7). The largest number less than the current remainder, 1078 (from the eighth row), is found.
Dividing 272 and 8, starting with the hundreds digit, 2 is not divisible by 8. Add 20 and 7 to get 27. The largest number that the divisor of 8 can be multiplied by without exceeding 27 is 3, so it is written under the tens column. Subtracting 24 (the product of 3 and 8) from 27 gives 3 as the remainder.
Then () = means that the order of the group is 8 (i.e., there are 8 numbers less than 20 and coprime to it); () = means the order of each element divides 4, that is, the fourth power of any number coprime to 20 is congruent to 1 (mod 20).
Four bags with three marbles per bag gives twelve marbles (4 × 3 = 12). Multiplication can also be thought of as scaling. Here, 2 is being multiplied by 3 using scaling, giving 6 as a result. Animation for the multiplication 2 × 3 = 6 4 × 5 = 20. The large rectangle is made up of 20 squares, each 1 unit by 1 unit.
Cycles of the unit digit of multiples of integers ending in 1, 3, 7 and 9 (upper row), and 2, 4, 6 and 8 (lower row) on a telephone keypad. Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5.