Search results
Results From The WOW.Com Content Network
As in other mammals, human thermoregulation is an important aspect of homeostasis. In thermoregulation, body heat is generated mostly in the deep organs, especially the liver, brain, and heart, and in contraction of skeletal muscles. [1] Humans have been able to adapt to a great diversity of climates, including hot humid and hot arid.
The human body always works to remain in homeostasis. One form of homeostasis is thermoregulation. Body temperature varies in every individual, but the average internal temperature is 37.0 °C (98.6 °F). [1] Sufficient stress from extreme external temperature may cause injury or death if it exceeds the ability of the body to thermoregulate.
The honey bee, for example, does so by contracting antagonistic flight muscles without moving its wings (see insect thermoregulation). [ 18 ] [ 19 ] [ 20 ] This form of thermogenesis is, however, only efficient above a certain temperature threshold, and below about 9–14 °C (48–57 °F), the honey bee reverts to ectothermy.
Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation.
Thermoreceptors of the skin sense the temperature of water. A thermoreceptor is a non-specialised sense receptor, or more accurately the receptive portion of a sensory neuron, that codes absolute and relative changes in temperature, primarily within the innocuous range.
This internal body temperature is often, though not necessarily, higher than the immediate environment [2] (from Greek ὅμοιος homoios "similar" and θέρμη thermē "heat"). Homeothermy is one of the 3 types of thermoregulation in warm-blooded animal species. Homeothermy's opposite is poikilothermy. A poikilotherm is an organism that ...
To some degree, all cells of endotherms give off heat, especially when body temperature is below a regulatory threshold. However, brown adipose tissue is highly specialized for this non-shivering thermogenesis. First, each cell has a higher number of mitochondria compared to more typical cells.
Myoepithelial cells support the secretory epithelial cells. The duct of eccrine gland is formed by two layers of cuboidal epithelial cells. [9] Eccrine glands are active in thermoregulation by providing cooling from water evaporation of sweat secreted by the glands on the body surface and emotionally induced sweating (anxiety, fear, stress, and ...