When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proton pump - Wikipedia

    en.wikipedia.org/wiki/Proton_pump

    The combined transmembrane gradient of protons and charges created by proton pumps is called an electrochemical gradient. An electrochemical gradient represents a store of energy (potential energy) that can be used to drive a multitude of biological processes such as ATP synthesis, nutrient uptake and action potential formation. [citation needed]

  3. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    An ion gradient has potential energy and can be used to power chemical reactions when the ions pass through a channel (red). Hydrogen ions, or protons, will diffuse from a region of high proton concentration to a region of lower proton concentration, and an electrochemical concentration gradient of protons across a membrane can be harnessed to ...

  4. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    In cyclic electron transfer, electrons are removed from an excited chlorophyll molecule, passed through an electron transport chain to a proton pump, and then returned to the chlorophyll. The mobile electron carriers are, as usual, a lipid-soluble quinone and a water-soluble cytochrome. The resulting proton gradient is used to make ATP.

  5. Electrochemical gradient - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_gradient

    The proton gradient can be generated through either noncyclic or cyclic photophosphorylation. Of the proteins that participate in noncyclic photophosphorylation, photosystem II (PSII), plastiquinone, and cytochrome b 6 f complex directly contribute to generating the proton gradient. For each four photons absorbed by PSII, eight protons are ...

  6. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    The complex contains coordinated copper ions and several heme groups. At the same time, eight protons are removed from the mitochondrial matrix (although only four are translocated across the membrane), contributing to the proton gradient. The exact details of proton pumping in Complex IV are still under study. [9] Cyanide is an inhibitor of ...

  7. Plasma membrane H+-ATPase - Wikipedia

    en.wikipedia.org/wiki/Plasma_membrane_H+-ATPase

    H+-ATPase energizes nutrient uptake by establishing an electrochemical proton gradient that will drive secondary active transport. H+-ATPase uses the energy of ATP to pump H+ protons out of the cytoplasm of the cell. [13] This creates and maintains an electrochemical gradient of H+ from outside the cell to inside the cell.

  8. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    ATP synthase lies across a cellular membrane and forms an aperture that protons can cross from areas of high concentration to areas of low concentration, imparting energy for the synthesis of ATP. This electrochemical gradient is generated by the electron transport chain and allows cells to store

  9. Cotransporter - Wikipedia

    en.wikipedia.org/wiki/Cotransporter

    A Proton gradient moves the ions into the vacuole by proton-sodium antiporter or the proton-calcium antiporter. In plants, sucrose transport is distributed throughout the plant by the proton-pump where the pump, as discussed above, creates a gradient of protons so that there are many more on one side of the membrane than the other. As the ...

  1. Related searches what is a proton gradient and how is it created in the cell division of plants

    proton pump diagramwhat is electrochemical gradient
    electrochemical gradient diagramelectrochemical gradient in battery