Search results
Results From The WOW.Com Content Network
The density is usually on the order of 1000 kg/m^3, i.e. that of water. Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to ...
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. [1] For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. [2]
The concept of permeability is of importance in determining the flow characteristics of hydrocarbons in oil and gas reservoirs, [4] and of groundwater in aquifers. [5]For a rock to be considered as an exploitable hydrocarbon reservoir without stimulation, its permeability must be greater than approximately 100 md (depending on the nature of the hydrocarbon – gas reservoirs with lower ...
Newtonian fluids are the easiest mathematical models of fluids that account for viscosity. While no real fluid fits the definition perfectly, many common liquids and gases, such as water and air, can be assumed to be Newtonian for practical calculations under ordinary conditions.
The value of η ∞ represents the lowest viscosity attainable and may be orders of magnitude lower than η 0, depending on the degree of shear thinning. Viscosity is plotted against shear rate in a log(η) vs. log( γ ˙ {\displaystyle {\dot {\gamma }}} ) plot, where the linear region is the shear-thinning regime and can be expressed using the ...
In turbulent flow regimes (Re >> 1), viscosity can typically be neglected, however this is only valid at distances far from solid interfaces. [1] When considering flow in the vicinity of a solid surface, such as flow through a pipe or around a wing, it is convenient to categorize four distinct regions of flow near the surface: [ 1 ]
For instance, it is 0 in a monatomic gas at low density (unless the gas is moderately relativistic [3]), whereas in an incompressible flow the volume viscosity is superfluous since it does not appear in the equation of motion. [4] Volume viscosity was introduced in 1879 by Sir Horace Lamb in his famous work Hydrodynamics. [5]
This classification has no direct relation with the common usage of the word "fragility" to mean brittleness. Viscous flow in amorphous materials is characterised by deviations from the Arrhenius-type behaviour: the activation energy of viscosity Q changes from a high value Q H at low temperatures (in the glassy state) to a low value Q L at ...