When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    The PCR method may be broadly divided into three major steps: 1. Perform PCA on the observed data matrix for the explanatory variables to obtain the principal components, and then (usually) select a subset, based on some appropriate criteria, of the principal components so obtained for further use.

  3. Sparse PCA - Wikipedia

    en.wikipedia.org/wiki/Sparse_PCA

    Sparse principal component analysis (SPCA or sparse PCA) is a technique used in statistical analysis and, in particular, in the analysis of multivariate data sets. It extends the classic method of principal component analysis (PCA) for the reduction of dimensionality of data by introducing sparsity structures to the input variables.

  4. Soft independent modelling of class analogies - Wikipedia

    en.wikipedia.org/wiki/Soft_independent_modelling...

    In order to build the classification models, the samples belonging to each class need to be analysed using principal component analysis (PCA); only the significant components are retained. For a given class, the resulting model then describes either a line (for one Principal Component or PC), plane (for two PCs) or hyper-plane (for more than ...

  5. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  6. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  7. scikit-multiflow - Wikipedia

    en.wikipedia.org/wiki/Scikit-multiflow

    The scikit-multiflow library is implemented under the open research principles and is currently distributed under the BSD 3-clause license. scikit-multiflow is mainly written in Python, and some core elements are written in Cython for performance. scikit-multiflow integrates with other Python libraries such as Matplotlib for plotting, scikit-learn for incremental learning methods [4 ...

  8. Multidimensional scaling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_scaling

    It is also known as Principal Coordinates Analysis (PCoA), Torgerson Scaling or Torgerson–Gower scaling. It takes an input matrix giving dissimilarities between pairs of items and outputs a coordinate matrix whose configuration minimizes a loss function called strain, [2] which is given by (,,...,) = (, (),) /, where denote vectors in N-dimensional space, denotes the scalar product between ...

  9. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    The contribution of the sequential NMF components can be compared with the Karhunen–Loève theorem, an application of PCA, using the plot of eigenvalues. A typical choice of the number of components with PCA is based on the "elbow" point, then the existence of the flat plateau is indicating that PCA is not capturing the data efficiently, and ...