When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Elastic properties of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Elastic_properties_of_the...

    Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.

  3. Bulk modulus - Wikipedia

    en.wikipedia.org/wiki/Bulk_modulus

    Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).

  4. List of materials properties - Wikipedia

    en.wikipedia.org/wiki/List_of_materials_properties

    Bulk modulus: Ratio of pressure to volumetric compression (GPa) or ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume; Coefficient of restitution: The ratio of the final to initial relative velocity between two objects after they collide. Range: 0–1, 1 for perfectly elastic collision.

  5. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    The bulk modulus is an extension of Young's modulus to three dimensions. Flexural modulus (E flex) describes the object's tendency to flex when acted upon by a moment. Two other elastic moduli are Lamé's first parameter, λ, and P-wave modulus, M, as used in table of modulus comparisons

  6. Template:Elastic moduli - Wikipedia

    en.wikipedia.org/wiki/Template:Elastic_moduli

    Conversion formulae Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).

  7. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    Specific modulus is a materials property consisting of the elastic modulus per mass density of a material. It is also known as the stiffness to weight ratio or specific stiffness . High specific modulus materials find wide application in aerospace applications where minimum structural weight is required.

  8. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    The elastic components, as previously mentioned, can be modeled as springs of elastic constant E, given the formula: = where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs under the given stress, similar to Hooke's law.

  9. Lamé parameters - Wikipedia

    en.wikipedia.org/wiki/Lamé_parameters

    The two parameters together constitute a parameterization of the elastic moduli for homogeneous isotropic media, popular in mathematical literature, and are thus related to the other elastic moduli; for instance, the bulk modulus can be expressed as K = λ + ⁠ 2 / 3 ⁠ μ.