Search results
Results From The WOW.Com Content Network
Antipodal point, the point diametrically opposite to another point on a sphere, such that a line drawn between them passes through the centre of the sphere and forms a true diameter; Conjugate point, any point that can almost be joined to another by a 1-parameter family of geodesics (e.g., the antipodes of a sphere, which are linkable by any ...
In geometry, a point is an abstract idealization of an exact position, without size, in physical space, [1] or its generalization to other kinds of mathematical spaces.As zero-dimensional objects, points are usually taken to be the fundamental indivisible elements comprising the space, of which one-dimensional curves, two-dimensional surfaces, and higher-dimensional objects consist; conversely ...
For example, a circle is a concept that makes sense in Euclidean geometry, but not in affine linear geometry or projective geometry, where circles cannot be distinguished from ellipses, since one may squeeze a circle to an ellipse. Similarly, a parabola is a concept in affine geometry but not in projective geometry, where a parabola is simply a ...
Orthogonal (or perpendicular) – at a right angle (at the point of intersection). Elevation – along a curve from a point on the horizon to the zenith, directly overhead. Depression – along a curve from a point on the horizon to the nadir, directly below. Vertical – spanning the height of a body. Longitudinal – spanning the length of a ...
For example, Poncelet's porism and Steiner's porism imply that if there is one way to arrange lines or circles then there are infinitely many ways. postulated A postulated object (point, line, and so on) is an object in some larger space. For example, a point at infinity of projective space is a postulated point of affine space.
For instance, the points A = (1, 0, 0) and B = (0, 1, 0) in space determine the bound vector pointing from the point x = 1 on the x-axis to the point y = 1 on the y-axis. In Cartesian coordinates, a free vector may be thought of in terms of a corresponding bound vector, in this sense, whose initial point has the coordinates of the origin O = (0 ...
In geometry, the notion of a connection makes precise the idea of transporting local geometric objects, such as tangent vectors or tensors in the tangent space, along a curve or family of curves in a parallel and consistent manner. There are various kinds of connections in modern geometry, depending on what sort of data one wants to transport.
In the former case, equivalence of two definitions means that a mathematical object (for example, geometric body) satisfies one definition if and only if it satisfies the other definition. In the latter case, the meaning of equivalence (between two definitions of a structure) is more complicated, since a structure is more abstract than an object.