When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lagrange's identity (boundary value problem) - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_identity...

    In the study of ordinary differential equations and their associated boundary value problems in mathematics, Lagrange's identity, named after Joseph Louis Lagrange, gives the boundary terms arising from integration by parts of a self-adjoint linear differential operator. Lagrange's identity is fundamental in Sturm–Liouville theory.

  3. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...

  4. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In geometric measure theory, integration by substitution is used with Lipschitz functions. A bi-Lipschitz function is a Lipschitz function φ : U → R n which is injective and whose inverse function φ −1 : φ(U) → U is also Lipschitz. By Rademacher's theorem, a bi-Lipschitz mapping is differentiable almost everywhere.

  5. Adjoint equation - Wikipedia

    en.wikipedia.org/wiki/Adjoint_equation

    An adjoint equation is a linear differential equation, usually derived from its primal equation using integration by parts.Gradient values with respect to a particular quantity of interest can be efficiently calculated by solving the adjoint equation.

  6. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    This form is used to construct solutions to Dirichlet boundary condition problems. Solutions for Neumann boundary condition problems may also be simplified, though the Divergence theorem applied to the differential equation defining Green's functions shows that the Green's function cannot integrate to zero on the boundary, and hence cannot ...

  7. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Integration around a closed curve in the clockwise sense is the negative of the same line integral in the counterclockwise sense (analogous to interchanging the limits in a definite integral): ∂ S {\displaystyle {\scriptstyle \partial S}} A ⋅ d ℓ = − {\displaystyle \mathbf {A} \cdot d{\boldsymbol {\ell }}=-} ∂ S {\displaystyle ...

  8. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...

  9. Integro-differential equation - Wikipedia

    en.wikipedia.org/wiki/Integro-differential_equation

    Consider the following second-order problem, ′ + + = () =, where = {,, <is the Heaviside step function.The Laplace transform is defined by, = {()} = ().Upon taking term-by-term Laplace transforms, and utilising the rules for derivatives and integrals, the integro-differential equation is converted into the following algebraic equation,