Search results
Results From The WOW.Com Content Network
An equivalent version which shuffles the array in the opposite direction (from lowest index to highest) is: -- To shuffle an array a of n elements (indices 0..n-1): for i from 0 to n−2 do j ← random integer such that i ≤ j ≤ n-1 exchange a[i] and a[j]
import random # this function checks whether or not the array is sorted def is_sorted (random_array): for i in range (1, len (random_array)): if random_array [i] < random_array [i-1]: return False return True # this function repeatedly shuffles the elements of the array until they are sorted def bogo_sort (random_array): while not is_sorted (random_array): random. shuffle (random_array) return ...
An Array is a JavaScript object prototyped from the Array constructor specifically designed to store data values indexed by integer keys. Arrays, unlike the basic Object type, are prototyped with methods and properties to aid the programmer in routine tasks (for example, join , slice , and push ).
If we associate with each item of the input a uniformly generated random number, the k items with the largest (or, equivalently, smallest) associated values form a simple random sample. [3] A simple reservoir-sampling thus maintains the k items with the currently largest associated values in a priority queue.
A simple algorithm to generate a permutation of n items uniformly at random without retries, known as the Fisher–Yates shuffle, is to start with any permutation (for example, the identity permutation), and then go through the positions 0 through n − 2 (we use a convention where the first element has index 0, and the last element has index n − 1), and for each position i swap the element ...
Random access compared to sequential access. Random access (also called direct access) is the ability to access an arbitrary element of a sequence in equal time or any datum from a population of addressable elements roughly as easily and efficiently as any other, no matter how many elements may be in the set.
Note that in JavaScript filter and map return a new shallow copy of the preceding array but sort operates in place. To get a similar behavior, toSorted may be used. But in this particular case, sort operates on the new array returned from filter and therefore does not change the original array.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.