Ad
related to: stable vs unstable equilibrium physics
Search results
Results From The WOW.Com Content Network
The simplest kind of an orbit is a fixed point, or an equilibrium. If a mechanical system is in a stable equilibrium state then a small push will result in a localized motion, for example, small oscillations as in the case of a pendulum. In a system with damping, a stable equilibrium state is moreover asymptotically stable. On the other hand ...
The potential energy is at a local maximum, which means that the system is in an unstable equilibrium state. If the system is displaced an arbitrarily small distance from the equilibrium state, the forces of the system cause it to move even farther away. Diagram of a ball placed in a stable equilibrium. Second derivative > 0
A typical example of a differential equation with a saddle-node bifurcation is: = +. Here is the state variable and is the bifurcation parameter.. If < there are two equilibrium points, a stable equilibrium point at and an unstable one at +.
A ball located at this point, ball 3, is in equilibrium but unstable; the slightest disturbance will cause it to move to one of the stable points. Light switch, a bistable mechanism. In a dynamical system, bistability means the system has two stable equilibrium states. [1] A bistable structure can be resting in either of two states.
Many, but not all, biochemical pathways evolve to stable, steady states. As a result, the steady state represents an important reference state to study. This is also related to the concept of homeostasis, however, in biochemistry, a steady state can be stable or unstable such as in the case of sustained oscillations or bistable behavior.
a) stable, b) turbulent. In fluid dynamics, hydrodynamic stability is the field which analyses the stability and the onset of instability of fluid flows. The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so, how these instabilities will cause the development of turbulence. [1]
Stable equilibrium can refer to: Homeostasis, a state of equilibrium used to describe organisms; Mechanical equilibrium, a state in which all particles in a system are at rest, and total force on each particle is permanently zero; Balance of nature, a theory in ecological science; Stability theory, a theory in mathematics
A ball at rest in a valley (right) will return to the bottom if moved slightly, or perturbed, and is thus dynamically stable. One on the top of a hill (left) will accelerate away from its rest point if perturbed, and is thus dynamically unstable. Plasmas have many mechanisms that make them fall into the second group under certain conditions.