Search results
Results From The WOW.Com Content Network
The motor size constant ... is primarily used to calculate the armature current for a given torque demand: = ... Formula ) Formula () shorthand = motor ...
Engine power is the power that an engine can put out. It can be expressed in power units, most commonly kilowatt, pferdestärke (metric horsepower), or horsepower.In terms of internal combustion engines, the engine power usually describes the rated power, which is a power output that the engine can maintain over a long period of time according to a certain testing method, for example ISO 1585.
Power-to-weight ratio (PWR, also called specific power, or power-to-mass ratio) is a calculation commonly applied to engines and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measurement of actual performance of any engine or power source.
The company's Lexus ES 330 and Camry SE V6 (3.3 L V6) were previously rated at 225 hp (168 kW) but the ES 330 dropped to 218 hp (163 kW) while the Camry declined to 210 hp (160 kW). The first engine certified under the new program was the 7.0 L LS7 used in the 2006 Chevrolet Corvette Z06.
[citation needed] Calculation: 0.9 × 0.9 = 0.81 Individual traction motor ratings usually range up 1,600 kW (2,100 hp). Another important factor when traction motors are designed or specified is operational speed. The motor armature has a maximum safe rotating speed at or below which the windings will stay safely in place.
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time.. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: = =
To calculate the actual efficiency of an engine requires the energy density of the fuel being used. Different fuels have different energy densities defined by the fuel's heating value. The lower heating value (LHV) is used for internal-combustion-engine-efficiency calculations because the heat at temperatures below 150 °C (300 °F) cannot be ...
The service factor is typically in the 1.15-1.4 range, with the figure being lower for higher-power motors. For every hour of operation at the service-factor-adjusted power rating, a motor loses two to three hours of life at nominal power, i.e. its service life is reduced to less than half for continued operation at this level.