Search results
Results From The WOW.Com Content Network
This induced emf is represented by the parameter known as inductance. It is customary to use the symbol L for inductance, in honour of the physicist Heinrich Lenz. In the SI system, the unit of inductance is the henry (H), which is the amount of inductance which causes a voltage of 1 volt when the current is changing at a rate of one ampere per ...
Low-frequency induction can be a dangerous form of inductive coupling when it happens inadvertently. For example, if a long-distance metal pipeline is installed along a right of way in parallel with a high-voltage power line, the power line can induce current on the pipe. Since the pipe is a conductor, insulated by its protective coating from ...
A series circuit with a voltage source (such as a battery, or in this case a cell) and three resistance units. Two-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology.
parallel – series (circuits) resistance – conductance; voltage division – current division; impedance – admittance; capacitance – inductance; reactance – susceptance; short circuit – open circuit; Kirchhoff's current law – Kirchhoff's voltage law. KVL and KCL; Thévenin's theorem – Norton's theorem
Figure. 1: Cable theory's simplified view of a neuronal fiber. In neuroscience, classical cable theory uses mathematical models to calculate the electric current (and accompanying voltage) along passive [a] neurites, particularly the dendrites that receive synaptic inputs at different sites and times.
Mutual inductance occurs when the change in current in one inductor induces a voltage in another nearby inductor. It is important as the mechanism by which transformers work, but it can also cause unwanted coupling between conductors in a circuit. The mutual inductance, , is also a measure of the coupling between two inductors.
The most common approach is to roll up all the distributed capacitance into one lumped element in parallel with the inductance and resistance of the coil. This lumped model works successfully at low frequencies but falls apart at high frequencies where the usual practice is to simply measure (or specify) an overall Q for the inductor without ...
[1] [2] In the case of two windings wound around the same core in parallel, for example, the polarity will be the same on the same ends: A sudden (instantaneous) current in the first coil will induce a voltage opposing the sudden increase in the first and also in the second coil, because the magnetic field produced by the current in the first ...