Search results
Results From The WOW.Com Content Network
For n = 1, the cyclotomic polynomial is Φ 1 (x) = x − 1 Therefore, the only primitive first root of unity is 1, which is a non-primitive n th root of unity for every n > 1. As Φ 2 (x) = x + 1, the only primitive second (square) root of unity is −1, which is also a non-primitive n th root of unity for every even n > 2.
An example of a more complicated (although small enough to be written here) solution is the unique real root of x 5 − 5x + 12 = 0. Let a = √ 2φ −1, b = √ 2φ, and c = 4 √ 5, where φ = 1+ √ 5 / 2 is the golden ratio. Then the only real solution x = −1.84208... is given by
For example, −2 has a real 5th root, = … but −2 does not have any real 6th roots. Every non-zero number x, real or complex, has n different complex number nth roots. (In the case x is real, this count includes any real nth roots.) The only complex root of 0 is 0.
Quintic function: Fifth degree polynomial. Rational functions: A ratio of two polynomials. nth root. Square root: Yields a number whose square is the given one. Cube root: Yields a number whose cube is the given one.
If exponentiation is considered as a multivalued function then the possible values of (−1 ⋅ −1) 1/2 are {1, −1}. The identity holds, but saying {1} = {(−1 ⋅ −1) 1/2 } is incorrect. The identity ( e x ) y = e xy holds for real numbers x and y , but assuming its truth for complex numbers leads to the following paradox , discovered ...
The first complete real-root isolation algorithm results from Sturm's theorem (1829). However, when real-root-isolation algorithms began to be implemented on computers it appeared that algorithms derived from Sturm's theorem are less efficient than those derived from Descartes' rule of signs (1637).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The subtraction of only multiples of 2 from the maximal number of positive roots occurs because the polynomial may have nonreal roots, which always come in pairs since the rule applies to polynomials whose coefficients are real. Thus if the polynomial is known to have all real roots, this rule allows one to find the exact number of positive and ...