When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    In a right triangle, the median from the hypotenuse (that is, the line segment from the midpoint of the hypotenuse to the right-angled vertex) divides the right triangle into two isosceles triangles. This is because the midpoint of the hypotenuse is the center of the circumcircle of the right triangle, and each of the two triangles created by ...

  3. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    Set square shaped as 45° - 45° - 90° triangle The side lengths of a 45° - 45° - 90° triangle 45° - 45° - 90° right triangle of hypotenuse length 1.. In plane geometry, dividing a square along its diagonal results in two isosceles right triangles, each with one right angle (90°, ⁠ π / 2 ⁠ radians) and two other congruent angles each measuring half of a right angle (45°, or ...

  4. Right triangle - Wikipedia

    en.wikipedia.org/wiki/Right_triangle

    A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    Both of these extreme cases occur for the isosceles right triangle. [citation needed] The Lemoine hexagon inscribed in a triangle. The Lemoine hexagon is a cyclic hexagon with vertices given by the six intersections of the sides of a triangle with the three lines that are parallel to the sides and that pass through its symmedian point.

  6. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    Isosceles triangle with equal sides AB = AC divided into two right triangles by an altitude drawn from one of the two base angles. In the case of right triangles, the triangle inequality specializes to the statement that the hypotenuse is greater than either of the two sides and less than their sum. [9]

  7. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.

  8. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Duplicate the right triangle to form the isosceles triangle ACP. Construct the circle with center A and radius b, and its tangent h = BH through B. The tangent h forms a right angle with the radius b (Euclid's Elements: Book 3, Proposition 18; or see here), so the yellow triangle in Figure 8 is right. Apply the Pythagorean theorem to obtain

  9. Kepler triangle - Wikipedia

    en.wikipedia.org/wiki/Kepler_triangle

    Therefore, the Kepler triangle can be defined as the right triangle that, among all right triangles with the same hypotenuse, forms with its reflection the isosceles triangle of maximum inradius. [16] The same reflection also forms an isosceles triangle that, for a given perimeter, contains the largest possible semicircle. [17]