Search results
Results From The WOW.Com Content Network
For example, a helium atom containing four nucleons has a mass about 0.8% less than the total mass of four hydrogen atoms (each containing one nucleon). The helium nucleus has four nucleons bound together, and the binding energy which holds them together is, in effect, the missing 0.8% of mass. [8] [9]
In a hydrogen bond, the electronegative atom not covalently attached to the hydrogen is named the proton acceptor, whereas the one covalently bound to the hydrogen is named the proton donor. This nomenclature is recommended by the IUPAC. [6] The hydrogen of the donor is protic and therefore can act as a Lewis acid and the acceptor is the Lewis ...
[23]: 702 Hydrogen bonds are responsible for the high boiling points of water and ammonia with respect to their heavier analogues. In some cases a similar halogen bond can be formed by a halogen atom located between two electronegative atoms on different molecules. At short distances, repulsive forces between atoms also become important.
Depiction of a hydrogen atom showing the diameter as about twice the Bohr model radius. (Image not to scale) A hydrogen atom is an atom of the chemical element hydrogen.The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb force.
If a body with the mass and radius of Earth were made purely of hydrogen-1, then the gravitational binding energy of that body would be about 0.391658 eV per atom. If a hydrogen-1 body had the mass and radius of the Sun, its gravitational binding energy would be about 1,195.586 eV per atom. Astrophysical level: Bond energy; Bond-dissociation energy
A hydrogen bond (H-bond), is a specific type of interaction that involves dipole–dipole attraction between a partially positive hydrogen atom and a highly electronegative, partially negative oxygen, nitrogen, sulfur, or fluorine atom (not covalently bound to said hydrogen atom). It is not a covalent bond, but instead is classified as a strong ...
Electrons in an ionic bond tend to be mostly found around one of the two constituent atoms due to the large electronegativity difference between the two atoms, generally more than 1.9, (greater difference in electronegativity results in a stronger bond); this is often described as one atom giving electrons to the other. [5]
Although the two bonds are the equivalent in the original symmetric molecule, the bond-dissociation energy of an oxygen–hydrogen bond varies slightly depending on whether or not there is another hydrogen atom bonded to the oxygen atom. Thus, the bond energy of a molecule of water is 461.5 kJ/mol (110.3 kcal/mol). [8] When the bond is broken ...