Search results
Results From The WOW.Com Content Network
It is stronger than the weak operator topology. The weak operator topology (WOT) or weak topology is defined by the seminorms |(x(h 1), h 2)| for h 1, h 2 ∈ H. (Warning: the weak Banach space topology, the weak operator topology, and the ultraweak topology are all sometimes called the weak topology, but they are different.)
For these operators, one can reach conclusions that are completely analogous to what was inferred for Kuratowski closures. For example, all Kuratowski interior operators are isotonic, i.e. they satisfy [K4'], and because of intensivity [I2], it is possible to weaken the equality in [I3] to a simple inclusion.
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.
The predual of B(H) is the trace class operators C 1 (H), and it generates the w*-topology on B(H), called the weak-star operator topology or σ-weak topology. The weak-operator and σ-weak topologies agree on norm-bounded sets in B(H). A net {T α} ⊂ B(H) converges to T in WOT if and only Tr(T α F) converges to Tr(TF) for all finite-rank ...
In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators , and consideration may be given to nonlinear operators .
The SOT topology also provides the framework for the measurable functional calculus, just as the norm topology does for the continuous functional calculus. The linear functionals on the set of bounded operators on a Hilbert space that are continuous in the SOT are precisely those continuous in the weak operator topology (WOT).
One such example is the C*-algebra of compact operators (on an infinite dimensional Hilbert space). For most other common topologies the closed *-algebras containing 1 are von Neumann algebras; this applies in particular to the weak operator, strong operator, *-strong operator, ultraweak, ultrastrong, and *-ultrastrong topologies.
The weak topology on a JW algebra M is define by the seminorms |f(a)| where f is a normal state; the strong topology is defined by the seminorms |f(a 2)| 1/2. The quadratic representation and Jordan product operators L(a)b = a ∘ b are continuous operators on M for both the weak and strong topology. An idempotent p in a JBW algebra M is called ...