Ad
related to: graph theory chromatic number of data set- Data Strength Assessment
Recognize and solve common problems
felt by modern data teams
- Heatmaps
The easiest way to understand user
engagement. Insights you can trust.
- Data Export
Export every point of customer
experience data for your analysts.
- Privacy Controls
Manage privacy, consent, and
exclusion of on-screen text.
- Data Strength Assessment
Search results
Results From The WOW.Com Content Network
The smallest number of colors needed for an edge coloring of a graph G is the chromatic index, or edge chromatic number, χ ′ (G). A Tait coloring is a 3-edge coloring of a cubic graph . The four color theorem is equivalent to the assertion that every planar cubic bridgeless graph admits a Tait coloring.
For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.
The graph of the 3-3 duoprism (the line graph of ,) is perfect.Here it is colored with three colors, with one of its 3-vertex maximum cliques highlighted. In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph.
The 7 cycles of the wheel graph W 4. For odd values of n, W n is a perfect graph with chromatic number 3: the vertices of the cycle can be given two colors, and the center vertex given a third color. For even n, W n has chromatic number 4, and (when n ≥ 6) is not perfect. W 7 is the only wheel graph that is a unit distance graph in the ...
In graph theory, Brooks' theorem states a relationship between the maximum degree of a graph and its chromatic number. According to the theorem, in a connected graph in which every vertex has at most Δ neighbors, the vertices can be colored with only Δ colors, except for two cases, complete graphs and cycle graphs of odd length, which require ...
The minimum number of colors needed for the incidence coloring of a graph G is known as the incidence chromatic number or incidence coloring number of G, represented by (). This notation was introduced by Jennifer J. Quinn Massey and Richard A. Brualdi in 1993.
In graph theory, the Grundy number or Grundy chromatic number of an undirected graph is the maximum number of colors that can be used by a greedy coloring strategy that considers the vertices of the graph in sequence and assigns each vertex its first available color, using a vertex ordering chosen to use as many colors as possible.
Let K(H) is the chromatic number of any ordered graph H. Then for any ordered graph H, X < (H) ≥ K(H). One thing to be noted, for a particular graph H and its isomorphic graphs the chromatic number is same, but the interval chromatic number may differ. Actually it depends upon the ordering of the vertex set.