Search results
Results From The WOW.Com Content Network
The Journal of Modern Applied Statistical Methods is a biannual peer-reviewed open access journal. [1] It was established in 2002 by Shlomo Sawilowsky, and is currently published by the Wayne State University Library System in Detroit, MI. The Current Index to Statistics classifies it as one of over 160 core statistics journals. [2]
The general linear model incorporates a number of different statistical models: ANOVA, ANCOVA, MANOVA, MANCOVA, ordinary linear regression, t-test and F-test. The general linear model is a generalization of multiple linear regression to the case of more than one dependent variable.
The extracted variables are known as latent variables or factors; each one may be supposed to account for covariation in a group of observed variables. Canonical correlation analysis finds linear relationships among two sets of variables; it is the generalised (i.e. canonical) version of bivariate [3] correlation.
A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression, which predicts multiple correlated dependent variables rather than a single dependent variable. [2]
The Linear Model of Innovation was an early model designed to understand the relationship of science and technology that begins with basic research that flows into applied research, development and diffusion [1] It posits scientific research as the basis of innovation which eventually leads to economic growth. [2]
The goal of polynomial regression is to model a non-linear relationship between the independent and dependent variables (technically, between the independent variable and the conditional mean of the dependent variable). This is similar to the goal of nonparametric regression, which aims to
Linear dynamical systems can be solved exactly, in contrast to most nonlinear ones. Occasionally, a nonlinear system can be solved exactly by a change of variables to a linear system. Moreover, the solutions of (almost) any nonlinear system can be well-approximated by an equivalent linear system near its fixed points. Hence, understanding ...
The latter is far from optimal, but the former, which changes only one variable at a time, is worse. See also the factorial experimental design methods pioneered by Sir Ronald A. Fisher. Reasons for disfavoring OFAT include: OFAT requires more runs for the same precision in effect estimation; OFAT cannot estimate interactions