Search results
Results From The WOW.Com Content Network
The chemical analysis of fatty acids in lipids typically begins with an interesterification step that breaks down their original esters (triglycerides, waxes, phospholipids etc.) and converts them to methyl esters, which are then separated by gas chromatography [41] or analyzed by gas chromatography and mid-infrared spectroscopy.
Structural Formula Lipid Numbers Propionic acid: Propanoic acid CH 3 CH 2 COOH C3:0 Butyric acid: Butanoic acid CH 3 (CH 2) 2 COOH C4:0 Valeric acid: Pentanoic acid CH 3 (CH 2) 3 COOH C5:0 Caproic acid: Hexanoic acid CH 3 (CH 2) 4 COOH C6:0 Enanthic acid: Heptanoic acid CH 3 (CH 2) 5 COOH C7:0 Caprylic acid: Octanoic acid CH 3 (CH 2) 6 COOH C8 ...
Omega-3 fatty acids have a double bond three carbons away from the methyl carbon, whereas omega-6 fatty acids have a double bond six carbons away from the methyl carbon. The illustration below shows the omega-6 fatty acid, linoleic acid. Polyunsaturated fatty acids can be classified in various groups by their chemical structure:
Omega−3 fatty acids, also called omega−3 oils, ω−3 fatty acids or n−3 fatty acids, [1] are polyunsaturated fatty acids (PUFAs) characterized by the presence of a double bond three atoms away from the terminal methyl group in their chemical structure. [2]
A saturated fat is a type of fat in which the fatty acid chains have all single bonds between the carbon atoms. A fat known as a glyceride is made of two kinds of smaller molecules: a short glycerol backbone, and fatty acids that each contain a long linear or branched chain of carbon (C) atoms.
In chemical structure, EPA is a carboxylic acid with a 20-carbon chain and five cis double bonds; the first double bond is located at the third carbon from the omega end. EPA is a polyunsaturated fatty acid (PUFA) that acts as a precursor for prostaglandin-3 (which inhibits platelet aggregation), thromboxane-3, and leukotriene-5 eicosanoids.
Cervonic acid (or docosahexaenoic acid) has 22 carbons, is found in fish oil, is a 4,7,10,13,16,19-hexa unsaturated fatty acid. In the human body its generation depends on consumption of omega 3 essential fatty acids (e.g., ALA or EPA), but the conversion process is inefficient. [22]
Docosahexaenoic acid (DHA) is an omega−3 fatty acid that is an important component of the human brain, cerebral cortex, skin, and retina. It is given the fatty acid notation 22:6(n−3). [1] It can be synthesized from alpha-linolenic acid or obtained directly from maternal milk (breast milk), fatty fish, fish oil, or algae oil.