Search results
Results From The WOW.Com Content Network
One digit describing the lift coefficient in tenths. Two digits describing the maximum thickness in percent of chord. For example, the NACA 16-123 airfoil has minimum pressure 60% of the chord back with a lift coefficient of 0.1 and maximum thickness of 23% of the chord.
It is also useful to show the relationship between section lift coefficient and drag coefficient. The section lift coefficient is based on two-dimensional flow over a wing of infinite span and non-varying cross-section so the lift is independent of spanwise effects and is defined in terms of L ′ {\displaystyle L^{\prime }} , the lift force ...
The drag curve or drag polar is the relationship between the drag on an aircraft and other variables, such as lift, the coefficient of lift, angle-of-attack or speed. It may be described by an equation or displayed as a graph (sometimes called a "polar plot"). [1] Drag may be expressed as actual drag or the coefficient of drag.
The coefficient of lift for a two-dimensional airfoil section with strictly horizontal surfaces can be calculated from the coefficient of pressure distribution by integration, or calculating the area between the lines on the distribution. This expression is not suitable for direct numeric integration using the panel method of lift approximation ...
The rates of change of lift and drag with angle of attack (AoA) are called respectively the lift and drag coefficients C L and C D. The varying ratio of lift to drag with AoA is often plotted in terms of these coefficients. For any given value of lift, the AoA varies with speed. Graphs of C L and C D vs. speed are referred to as drag curves ...
The aerodynamic center is the point at which the pitching moment coefficient for the airfoil does not vary with lift coefficient (i.e. angle of attack), making analysis simpler. [ 1 ] d C m d C L = 0 {\displaystyle {dC_{m} \over dC_{L}}=0} where C L {\displaystyle C_{L}} is the aircraft lift coefficient .
Streamlines around a NACA 0012 airfoil at moderate angle of attack. A foil generates lift primarily because of its shape and angle of attack. When oriented at a suitable angle, the foil deflects the oncoming fluid, resulting in a force on the foil in the direction opposite to the deflection. This force can be resolved into two components: lift ...
A NACA duct, [1] also sometimes called a NACA scoop or NACA inlet, is a common form of low-drag air inlet design, originally developed by the U.S. National Advisory Committee for Aeronautics (NACA), the precursor to NASA, in 1945.