Search results
Results From The WOW.Com Content Network
Vectors are defined in spherical coordinates by (r, θ, φ), where r is the length of the vector, θ is the angle between the positive Z-axis and the vector in question (0 ≤ θ ≤ π), and; φ is the angle between the projection of the vector onto the xy-plane and the positive X-axis (0 ≤ φ < 2π).
Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle ) is called the reference plane (sometimes fundamental plane ).
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
In the cylindrical coordinate system, a z-coordinate with the same meaning as in Cartesian coordinates is added to the r and θ polar coordinates giving a triple (r, θ, z). [8] Spherical coordinates take this a step further by converting the pair of cylindrical coordinates (r, z) to polar coordinates (ρ, φ) giving a triple (ρ, θ, φ). [9]
In a local coordinate system x i, i = 1, 2, …, n, the metric tensor appears as a matrix, denoted here by G, whose entries are the components g ij of the metric tensor relative to the coordinate vector fields. Let γ(t) be a piecewise-differentiable parametric curve in M, for a ≤ t ≤ b. The arclength of the curve is defined by
[definition needed] The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. While spherical polar coordinates are one orthogonal coordinate system for expressing vectors and tensors using polar and azimuthal angles and radial distance, the spherical basis are constructed ...
We may define a coordinate system in an -dimensional Euclidean space which is analogous to the spherical coordinate system defined for -dimensional Euclidean space, in which the coordinates consist of a radial coordinate , and angular coordinates ,, …, , where the angles ,, …, range over ...
In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry . Analytic geometry is used in physics and engineering , and also in aviation , rocketry , space science , and spaceflight .