When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Doping (semiconductor) - Wikipedia

    en.wikipedia.org/wiki/Doping_(semiconductor)

    Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as boron and antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.

  3. Self-aligned gate - Wikipedia

    en.wikipedia.org/wiki/Self-aligned_gate

    10. Using a conventional doping process, or a process called ion-implantation, the source, drain and the polysilicon are doped. The thin oxide under the silicon gate acts as a mask for the doping process. This step is what makes the gate self-aligning. The source and drain regions are automatically properly aligned with the (already in place ...

  4. Epitaxy - Wikipedia

    en.wikipedia.org/wiki/Epitaxy

    [17] [18] Centrifugally formed film growth is a process used to form thin layers of materials by using a centrifuge. The process has been used to create silicon for thin-film solar cells [19] [20] and far-infrared photodetectors. [21] Temperature and centrifuge spin rate are used to control layer growth. [18]

  5. High-electron-mobility transistor - Wikipedia

    en.wikipedia.org/wiki/High-electron-mobility...

    The invention of the high-electron-mobility transistor (HEMT) is usually attributed to physicist Takashi Mimura (三村 高志), while working at Fujitsu in Japan. [4] The basis for the HEMT was the GaAs (gallium arsenide) MOSFET (metal–oxide–semiconductor field-effect transistor), which Mimura had been researching as an alternative to the standard silicon (Si) MOSFET since 1977.

  6. Monolayer doping - Wikipedia

    en.wikipedia.org/wiki/Monolayer_doping

    Monolayer doping (MLD) in semiconductor production is a well controlled, wafer-scale surface doping technique first developed at the University of California, Berkeley, in 2007. [1] This work is aimed for attaining controlled doping of semiconductor materials with atomic accuracy, especially at nanoscale , which is not easily obtained by other ...

  7. Physical vapor deposition - Wikipedia

    en.wikipedia.org/wiki/Physical_vapor_deposition

    PVD process flow diagram. Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from ...

  8. Control-flow diagram - Wikipedia

    en.wikipedia.org/wiki/Control-flow_diagram

    Example of a "performance seeking" control-flow diagram. [1] A control-flow diagram (CFD) is a diagram to describe the control flow of a business process, process or review. Control-flow diagrams were developed in the 1950s, and are widely used in multiple engineering disciplines.

  9. Donor (semiconductors) - Wikipedia

    en.wikipedia.org/wiki/Donor_(semiconductors)

    For example, when silicon (Si), having four valence electrons, is to be doped as a n-type semiconductor, elements from group V like phosphorus (P) or arsenic (As) can be used because they have five valence electrons. A dopant with five valence electrons is also called a pentavalent impurity.