Search results
Results From The WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
A probabilistic proof is one in which an example is shown to exist, with certainty, by using methods of probability theory. Probabilistic proof, like proof by construction, is one of many ways to prove existence theorems. In the probabilistic method, one seeks an object having a given property, starting with a large set of candidates.
In one rearrangement proof, two squares are used whose sides have a measure of + and which contain four right triangles whose sides are a, b and c, with the hypotenuse being c. In the square on the right side, the triangles are placed such that the corners of the square correspond to the corners of the right angle in the triangles, forming a ...
Proof without words of the Nicomachus theorem (Gulley (2010)) that the sum of the first n cubes is the square of the n th triangular number. In mathematics, a proof without words (or visual proof) is an illustration of an identity or mathematical statement which can be demonstrated as self-evident by a diagram without any accompanying explanatory text.
A direct proof is the simplest form of proof there is. The word ‘proof’ comes from the Latin word probare, [3] which means “to test”. The earliest use of proofs was prominent in legal proceedings.
This is perhaps the simplest known proof, requiring the least mathematical background. It is an attractive example of a combinatorial proof (a proof that involves counting a collection of objects in two different ways). The proof given here is an adaptation of Golomb's proof. [1] To keep things simple, let us assume that a is a positive integer.
The Food and Drug Administration's new rules on "healthy" food labels are voluntary and are scheduled to take effect at the end of February. Which foods are considered 'healthy?' FDA issues new ...
In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.