Search results
Results From The WOW.Com Content Network
In computer science, an operator-precedence parser is a bottom-up parser that interprets an operator-precedence grammar.For example, most calculators use operator-precedence parsers to convert from the human-readable infix notation relying on order of operations to a format that is optimized for evaluation such as Reverse Polish notation (RPN).
To convert, the program reads each symbol in order and does something based on that symbol. The result for the above examples would be (in reverse Polish notation) "3 4 +" and "3 4 2 1 − × +", respectively. The shunting yard algorithm will correctly parse all valid infix expressions, but does not reject all invalid expressions.
An operator which is non-associative cannot compete for operands with operators of equal precedence. In Prolog for example, the infix operator :-is non-associative, so constructs such as a :- b :- c are syntax errors. Unary prefix operators such as − (negation) or sin (trigonometric function) are typically associative prefix operators.
Infix notation may also be distinguished from function notation, where the name of a function suggests a particular operation, and its arguments are the operands. An example of such a function notation would be S(1, 3) in which the function S denotes addition ("sum"): S (1, 3) = 1 + 3 = 4 .
Some languages support user-defined overloadeding (such as C++). An operator, defined by the language, can be overloaded to behave differently based on the type of input. Some languages (e.g. C, C++ and PHP) define a fixed set of operators, while others (e.g. Prolog, [6] Seed7, [7] F#, OCaml, Haskell) allow for user
The expression a & b == 7 is syntactically parsed as a & (b == 7) whereas the expression a + b == 7 is parsed as (a + b) == 7. This requires parentheses to be used more often than they otherwise would. Historically, there was no syntactic distinction between the bitwise and logical operators. In BCPL, B and early C, the operators && || didn't ...
Languages support a variety of ways to reference and consume other software in the syntax of the language. In some cases this is importing the exported functionality of a library, package or module but some mechanisms are simpler text file include operations.
Expressions can be represented in prefix, postfix or infix notations and conversion from one form to another may be accomplished using a stack. Many compilers use a stack to parse syntax before translation into low-level code. Most programming languages are context-free languages, allowing them to be parsed with stack-based machines.