When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    However, operations mixing upper and lower triangular matrices do not in general produce triangular matrices. For instance, the sum of an upper and a lower triangular matrix can be any matrix; the product of a lower triangular with an upper triangular matrix is not necessarily triangular either. The set of unitriangular matrices forms a Lie group.

  3. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  4. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix multiplication and matrix decomposition). The product sometimes includes a permutation matrix as well.

  5. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    For instance, when solving a system of linear equations =, the matrix A can be decomposed via the LU decomposition. The LU decomposition factorizes a matrix into a lower triangular matrix L and an upper triangular matrix U.

  6. Crout matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Crout_matrix_decomposition

    In linear algebra, the Crout matrix decomposition is an LU decomposition which decomposes a matrix into a lower triangular matrix (L), an upper triangular matrix (U) and, although not always needed, a permutation matrix (P). It was developed by Prescott Durand Crout. [1] The Crout matrix decomposition algorithm differs slightly from the ...

  7. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    The solution is obtained iteratively via (+) = (), where the matrix is decomposed into a lower triangular component , and a strictly upper triangular component such that = +. [4] More specifically, the decomposition of A {\displaystyle A} into L ∗ {\displaystyle L_{*}} and U {\displaystyle U} is given by:

  8. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.

  9. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    The standard convergence condition (for any iterative method) is when the spectral radius of the iteration matrix is less than 1: ((+)) < A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally dominant. Strict row diagonal dominance means that for each row, the absolute ...