Search results
Results From The WOW.Com Content Network
However, operations mixing upper and lower triangular matrices do not in general produce triangular matrices. For instance, the sum of an upper and a lower triangular matrix can be any matrix; the product of a lower triangular with an upper triangular matrix is not necessarily triangular either. The set of unitriangular matrices forms a Lie group.
In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix multiplication and matrix decomposition). The product sometimes includes a permutation matrix as well.
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
Related: the LDU decomposition is =, where L is lower triangular with ones on the diagonal, U is upper triangular with ones on the diagonal, and D is a diagonal matrix. Related: the LUP decomposition is =, where L is lower triangular, U is upper triangular, and P is a permutation matrix.
Triangular matrix: A matrix with all entries above the main diagonal equal to zero (lower triangular) or with all entries below the main diagonal equal to zero (upper triangular). Tridiagonal matrix: A matrix with the only nonzero entries on the main diagonal and the diagonals just above and below the main one. X–Y–Z matrix
In matrix theory and combinatorics, a Pascal matrix is a matrix (possibly infinite) containing the binomial coefficients as its elements. It is thus an encoding of Pascal's triangle in matrix form. There are three natural ways to achieve this: as a lower-triangular matrix, an upper-triangular matrix, or a symmetric matrix. For example, the 5 × ...
The Crout matrix decomposition algorithm differs slightly from the Doolittle method. Doolittle's method returns a unit lower triangular matrix and an upper triangular matrix, while the Crout method returns a lower triangular matrix and a unit upper triangular matrix. So, if a matrix decomposition of a matrix A is such that: A = LDU
In linear algebra, a Hessenberg matrix is a special kind of square matrix, one that is "almost" triangular. To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal. [1] They are named after Karl Hessenberg. [2]