When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    In prime factorization, the multiplicity of a prime factor is its -adic valuation.For example, the prime factorization of the integer 60 is . 60 = 2 × 2 × 3 × 5, the multiplicity of the prime factor 2 is 2, while the multiplicity of each of the prime factors 3 and 5 is 1.

  3. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    The concept of multiplicity is fundamental for Bézout's theorem, as it allows having an equality instead of a much weaker inequality. Intuitively, the multiplicity of a common zero of several polynomials is the number of zeros into which the common zero can split when the coefficients are slightly changed.

  4. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    This induces a duality between zeros and poles, that is fundamental for the study of meromorphic functions. For example, if a function is meromorphic on the whole complex plane plus the point at infinity, then the sum of the multiplicities of its poles equals the sum of the multiplicities of its zeros.

  5. Hilbert's Nullstellensatz - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_Nullstellensatz

    In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields.

  6. Multi-homogeneous Bézout theorem - Wikipedia

    en.wikipedia.org/wiki/Multi-homogeneous_Bézout...

    In algebra and algebraic geometry, the multi-homogeneous Bézout theorem is a generalization to multi-homogeneous polynomials of Bézout's theorem, which counts the number of isolated common zeros of a set of homogeneous polynomials. This generalization is due to Igor Shafarevich. [1]

  7. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    The method will usually converge, provided this initial guess is close enough to the unknown zero, and that f ′ (x 0) ≠ 0. Furthermore, for a zero of multiplicity 1, the convergence is at least quadratic (see Rate of convergence) in a neighbourhood of the zero, which intuitively means that the number of correct digits roughly doubles in ...

  8. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. [3]

  9. Hurwitz's theorem (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Hurwitz's_theorem_(complex...

    If f has a zero of order m at z 0 then for every small enough ρ > 0 and for sufficiently large k ∈ N (depending on ρ), f k has precisely m zeroes in the disk defined by |z − z 0 | < ρ, including multiplicity. Furthermore, these zeroes converge to z 0 as k → ∞. [1]