Search results
Results From The WOW.Com Content Network
Hand peening may also be performed after welding to help relieve the tensile stresses that develop on cooling in the welded metal (as well as the surrounding base metal). The level of reduction in tensile stress is minimal and only occurs on or near to the weld surface.
This technique is part of the High Frequency Mechanical Impact (HFMI) processes. Other acronyms are also equivalent: Ultrasonic Needle Peening (UNP), Ultrasonic Peening (UP). Ultrasonic impact treatment can result in controlled residual compressive stress, grain refinement and grain size reduction.
Shot peening is a cold working process used to produce a compressive residual stress layer and modify the mechanical properties of metals and composites. It entails striking a surface with shot (round metallic, glass, or ceramic particles) with force sufficient to create plastic deformation .
Mechanical methods to relieve undesirable surface tensile stresses and replace them with beneficial compressive residual stresses include shot peening and laser peening. Each works the surface of the material with a media: shot peening typically uses a metal or glass material; laser peening uses high intensity beams of light to induce a shock ...
The International Institute of Welding Technology IIW published the Guideline "Recommendations for the HFMI Treatment" [3] in October 2016. An overview of higher frequency hammers (HFMI) is presented, and recommendations for the correct application of the method and quantitative measurements for quality assurance the guideline provides the basis for measurements of HFMI improved welded joints ...
Vibratory Stress Relief, often abbreviated VSR, is a non-thermal stress relief method used by the metal working industry to enhance the dimensional stability and mechanical integrity of castings, forgings, and welded components, chiefly for two categories of these metal workpieces:
Shot peening is a conservation process for flattening a deformed steel belt in which the surface of the belt is impacted by small stainless steel or carbon steel balls, called peening shot. Each ball that strikes the belt acts as a peening hammer, forming a small indentation, or dimple, on the steel belt surface.
Laser peening (LP), or laser shock peening (LSP), is a surface engineering process used to impart beneficial residual stresses in materials. The deep, high-magnitude compressive residual stresses induced by laser peening increase the resistance of materials to surface-related failures, such as fatigue, fretting fatigue, and stress corrosion cracking.