Search results
Results From The WOW.Com Content Network
Java's java.math.BigInteger class has a modPow() method to perform modular exponentiation; MATLAB's powermod function from Symbolic Math Toolbox; Wolfram Language has the PowerMod function; Perl's Math::BigInt module has a bmodpow() method to perform modular exponentiation; Raku has a built-in routine expmod.
Since the exponential function equals its derivative, this implies that the exponential function is monotonically increasing. Extension of exponentiation to positive real bases: Let b be a positive real number. The exponential function and the natural logarithm being the inverse each of the other, one has = ().
The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = () = for every b > 0.
This method is an efficient variant of the 2 k-ary method. For example, to calculate the exponent 398, which has binary expansion (110 001 110) 2 , we take a window of length 3 using the 2 k -ary method algorithm and calculate 1, x 3 , x 6 , x 12 , x 24 , x 48 , x 49 , x 98 , x 99 , x 198 , x 199 , x 398 .
Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.
The fourteenth function () denotes the analytic extension of the factorial function via the gamma function, and () is its reciprocal, an entire function. Finally, in the last function f 16 ( x ) {\displaystyle f_{16}(x)} , the exponent x {\displaystyle x} can be replaced by k x {\displaystyle kx} for any nonzero real k {\displaystyle k} , and ...
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]
The polynomials, exponential function e x, and the trigonometric functions sine and cosine, are examples of entire functions. Examples of functions that are not entire include the square root, the logarithm, the trigonometric function tangent, and its inverse, arctan. For these functions the Taylor series do not converge if x is far from b.