When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    There is a half-life describing any exponential-decay process. For example: As noted above, in radioactive decay the half-life is the length of time after which there is a 50% chance that an atom will have undergone nuclear decay. It varies depending on the atom type and isotope, and is usually determined experimentally. See List of nuclides.

  3. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    The exponential time-constant for the process is =, so the half-life is ⁡ (). The same equations can be applied to the dual of current in an inductor. Furthermore, the particular case of a capacitor or inductor changing through several parallel resistors makes an interesting example of multiple decay processes, with each resistor representing ...

  4. List of radioactive nuclides by half-life - Wikipedia

    en.wikipedia.org/wiki/List_of_radioactive...

    Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.

  5. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Radioactive decay is seen in all isotopes of all elements of atomic number 83 or greater. Bismuth-209, however, is only very slightly radioactive, with a half-life greater than the age of the universe; radioisotopes with extremely long half-lives are considered effectively stable for practical purposes.

  6. Specific activity - Wikipedia

    en.wikipedia.org/wiki/Specific_activity

    The integral solution is described by exponential decay: =, where N 0 is the initial quantity of atoms at time t = 0. Half-life T 1/2 is defined as the length of time for half of a given quantity of radioactive atoms to undergo radioactive decay:

  7. Decay scheme - Wikipedia

    en.wikipedia.org/wiki/Decay_scheme

    Decay scheme of 60 Co. These relations can be quite complicated; a simple case is shown here: the decay scheme of the radioactive cobalt isotope cobalt-60. [1] 60 Co decays by emitting an electron with a half-life of 5.272 years into an excited state of 60 Ni, which then decays very fast to the ground state of 60 Ni, via two gamma decays.

  8. Radionuclide - Wikipedia

    en.wikipedia.org/wiki/Radionuclide

    Radioactive nonprimordial, but naturally occurring on Earth. 61 347 Carbon-14 (and other isotopes generated by cosmic rays) and daughters of radioactive primordial elements, such as radium, polonium, etc. 41 of these have a half life of greater than one hour. Radioactive synthetic half-life ≥ 1.0 hour). Includes most useful radiotracers. 662 989

  9. Decay energy - Wikipedia

    en.wikipedia.org/wiki/Decay_energy

    The molar weight is 59.93. The half life T of 5.27 year corresponds to the activity A = N [ ln(2) / T ], where N is the number of atoms per mol, and T is the half-life. Taking care of the units the radiation power for 60 Co is 17.9 W/g Radiation power in W/g for several isotopes: 60 Co: 17.9 238 Pu: 0.57 137 Cs: 0.6 241 Am: 0.1 210 Po: 140 (T ...