When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Instead, the half-life is defined in terms of probability: "Half-life is the time required for exactly half of the entities to decay on average". In other words, the probability of a radioactive atom decaying within its half-life is 50%. [2] For example, the accompanying image is a simulation of many identical atoms undergoing radioactive decay.

  3. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    A more intuitive characteristic of exponential decay for many people is the time required for the decaying quantity to fall to one half of its initial value. (If N(t) is discrete, then this is the median life-time rather than the mean life-time.) This time is called the half-life, and often denoted by the symbol t 1/2. The half-life can be ...

  4. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    An example is copper-64, which has 29 protons, and 35 neutrons, which decays with a half-life of 12.7004(13) hours. [27] This isotope has one unpaired proton and one unpaired neutron, so either the proton or the neutron can decay to the other particle, which has opposite isospin .

  5. Biological half-life - Wikipedia

    en.wikipedia.org/wiki/Biological_half-life

    So, for example, digoxin has a half-life (or t ⁠ 1 / 2 ⁠) of 24–36 h; this means that a change in the dose will take the best part of a week to take full effect. For this reason, drugs with a long half-life (e.g., amiodarone , elimination t ⁠ 1 / 2 ⁠ of about 58 days) are usually started with a loading dose to achieve their desired ...

  6. List of radioactive nuclides by half-life - Wikipedia

    en.wikipedia.org/wiki/List_of_radioactive...

    This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.

  7. Alpha decay - Wikipedia

    en.wikipedia.org/wiki/Alpha_decay

    As an extreme example, the half-life of the isotope bismuth-209 is 2.01 × 10 19 years. The isotopes in beta-decay stable isobars that are also stable with regards to double beta decay with mass number A = 5, A = 8, 143 ≤ A ≤ 155, 160 ≤ A ≤ 162, and A ≥ 165 are theorized to undergo alpha decay.

  8. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    The three long-lived nuclides are uranium-238 (half-life 4.5 billion years), uranium-235 (half-life 700 million years) and thorium-232 (half-life 14 billion years). The fourth chain has no such long-lasting bottleneck nuclide near the top, so almost all of the nuclides in that chain have long since decayed down to just before the end: bismuth-209.

  9. Radiocarbon dating - Wikipedia

    en.wikipedia.org/wiki/Radiocarbon_dating

    The half-life of a radioactive isotope (usually denoted by t 1/2) is a more familiar concept than the mean-life, so although the equations above are expressed in terms of the mean-life, it is more usual to quote the value of 14 C 's half-life than its mean-life. The currently accepted value for the half-life of 14 C is 5,700 ± 30 years. [21]