Search results
Results From The WOW.Com Content Network
In mathematics, Descartes' rule of signs, described by René Descartes in his La Géométrie, counts the roots of a polynomial by examining sign changes in its coefficients. The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients), and the difference ...
Descartes' rule of signs asserts that the difference between the number of sign variations in the sequence of the coefficients of a polynomial and the number of its positive real roots is a nonnegative even integer. It results that if this number of sign variations is zero, then the polynomial does not have any positive real roots, and, if this ...
All results described in this article are based on Descartes' rule of signs. If p(x) is a univariate polynomial with real coefficients, let us denote by # + (p) the number of its positive real roots, counted with their multiplicity, [1] and by v(p) the number of sign variations in the sequence of its coefficients. Descartes's rule of signs ...
In mathematics, the signature (v, p, r) [clarification needed] of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix g ab of the metric tensor with respect to a basis.
In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or p/q theorem) states a constraint on rational solutions of a polynomial equation + + + = with integer coefficients and ,.
Sturm's theorem provides a way for isolating real roots that is less efficient (for polynomials with integer coefficients) than other methods involving Descartes' rule of signs. However, it remains useful in some circumstances, mainly for theoretical purposes, for example for algorithms of real algebraic geometry that involve infinitesimals .
Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R.Then, the quotients / belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension.
The book contained a proof of Descartes' rule of signs that Prestet later acknowledged to be incomplete. [7] It also included a generalization of Euclid's lemma to non-prime divisors. [8] Elémens was published in 1675 by the Oratorian order for use in the curriculum of the many Oratorian colleges.