Search results
Results From The WOW.Com Content Network
If a system of equations is inconsistent, then the equations cannot be true together leading to contradictory information, such as the false statements 2 = 1, or + = and + = (which implies 5 = 6). Both types of equation system, inconsistent and consistent, can be any of overdetermined (having more equations than unknowns), underdetermined ...
An indeterminate system by definition is consistent, in the sense of having at least one solution. [3] For a system of linear equations, the number of equations in an indeterminate system could be the same as the number of unknowns, less than the number of unknowns (an underdetermined system ), or greater than the number of unknowns (an ...
The equations 3x + 2y = 6 and 3x + 2y = 12 are inconsistent. A linear system is inconsistent if it has no solution, and otherwise, it is said to be consistent. [7] When the system is inconsistent, it is possible to derive a contradiction from the equations, that may always be rewritten as the statement 0 = 1. For example, the equations
Gödel's original statement and proof of the incompleteness theorem requires the assumption that the system is not just consistent but ω-consistent. A system is ω-consistent if it is not ω-inconsistent, and is ω-inconsistent if there is a predicate P such that for every specific natural number m the system proves ~P(m), and yet the system ...
Such a theory is consistent if and only if it does not prove a particular sentence, called the Gödel sentence of the theory, which is a formalized statement of the claim that the theory is indeed consistent. Thus the consistency of a sufficiently strong, recursively enumerable, consistent theory of arithmetic can never be proven in that system ...
From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Consistent and inconsistent equations
The concepts of dependence and independence of systems are partially generalized in numerical linear algebra by the condition number, which (roughly) measures how close a system of equations is to being dependent (a condition number of infinity is a dependent system, and a system of orthogonal equations is maximally independent and has a ...
In this case, they are, roughly speaking, "as consistent as each other". In general, it is not possible to prove the absolute consistency of a theory T . Instead we usually take a theory S , believed to be consistent, and try to prove the weaker statement that if S is consistent then T must also be consistent—if we can do this we say that T ...