When.com Web Search

  1. Ads

    related to: multiplying integers lesson plan grade 7 english 3rd term test papers

Search results

  1. Results From The WOW.Com Content Network
  2. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    This is because there are integers that 7 may be multiplied by to reach the values of 14, 49, 0 and −21, while there are no such integers for 3 and −6. Each of the products listed below, and in particular, the products for 3 and −6, is the only way that the relevant number can be written as a product of 7 and another real number:

  3. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).

  4. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    If a positional numeral system is used, a natural way of multiplying numbers is taught in schools as long multiplication, sometimes called grade-school multiplication, sometimes called the Standard Algorithm: multiply the multiplicand by each digit of the multiplier and then add up all the properly shifted results.

  5. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    When multiplication is repeated, the resulting operation is known as exponentiation. For instance, the product of three factors of two (2×2×2) is "two raised to the third power", and is denoted by 2 3, a two with a superscript three. In this example, the number two is the base, and three is the exponent. [26]

  6. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number.

  7. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    A multiset may be formally defined as an ordered pair (A, m) where A is the underlying set of the multiset, formed from its distinct elements, and : + is a function from A to the set of positive integers, giving the multiplicity – that is, the number of occurrences – of the element a in the multiset as the number m(a).