Search results
Results From The WOW.Com Content Network
Some authors use the term complete to refer instead to a perfect binary tree as defined above, in which case they call this type of tree (with a possibly not filled last level) an almost complete binary tree or nearly complete binary tree. [20] [21] A complete binary tree can be efficiently represented using an array. [19] A complete binary ...
In computer science, a scapegoat tree is a self-balancing binary search tree, invented by Arne Andersson [2] in 1989 and again by Igal Galperin and Ronald L. Rivest in 1993. [1] It provides worst-case O ( log n ) {\displaystyle {\color {Blue}O(\log n)}} lookup time (with n {\displaystyle n} as the number of entries) and O ( log n ...
A binary heap is defined as a binary tree with two additional constraints: [3] Shape property: a binary heap is a complete binary tree; that is, all levels of the tree, except possibly the last one (deepest) are fully filled, and, if the last level of the tree is not complete, the nodes of that level are filled from left to right.
This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.
I suggest reorganizing it by putting the binary-trees-as-inductive-type definition first (i.e., a binary tree is either the empty binary tree, or a pair of binary trees; a labelled binary tree is either the empty labelled binary tree, or a pair of labelled binary trees plus a label), with some examples and illustrations (a realization as ...
A min-max heap is a complete binary tree containing alternating min (or even) and max (or odd) levels. Even levels are for example 0, 2, 4, etc, and odd levels are respectively 1, 3, 5, etc. We assume in the next points that the root element is at the first level, i.e., 0. Example of Min-max heap
In number theory, the Stern–Brocot tree is an infinite complete binary tree in which the vertices correspond one-for-one to the positive rational numbers, whose values are ordered from the left to the right as in a binary search tree. The Stern–Brocot tree was introduced independently by Moritz Stern and Achille Brocot .
A Range Query Tree is a complete binary tree that has a static structure, meaning that its content can be changed but not its size. The values of the underlying array over which the associative operation needs to be performed are stored in the leaves of the tree and the number of values have to be padded to the next power of two with the identity value for the associative operation used.