Search results
Results From The WOW.Com Content Network
This case always occurs as a degenerate conic in a pencil of circles. However, in other contexts it is not considered as a degenerate conic, as its equation is not of degree 2. The case of coincident lines occurs if and only if the rank of the 3×3 matrix is 1; in all other degenerate cases its rank is 2. [3]: p.108
If the conic is non-degenerate, the conjugates of a point always form a line and the polarity defined by the conic is a bijection between the points and lines of the extended plane containing the conic (that is, the plane together with the points and line at infinity). If the point p lies on the conic Q, the polar line of p is the tangent line ...
A degenerate case thus has special features which makes it non-generic, or a special case. However, not all non-generic or special cases are degenerate. For example, right triangles, isosceles triangles and equilateral triangles are non-generic and non-degenerate. In fact, degenerate cases often correspond to singularities, either in the object ...
To distinguish the degenerate cases from the non-degenerate cases (including the empty set with the latter) using matrix notation, let β be the determinant of the 3 × 3 matrix of the conic section—that is, β = (AC − B 2 / 4 )F + BED − CD 2 − AE 2 / 4 ; and let α = B 2 − 4AC be the discriminant.
Being tangent to five given lines also determines a conic, by projective duality, but from the algebraic point of view tangency to a line is a quadratic constraint, so naive dimension counting yields 2 5 = 32 conics tangent to five given lines, of which 31 must be ascribed to degenerate conics, as described in fudge factors in enumerative ...
The reason each line is assumed to contain at least 3 points is to eliminate some degenerate cases. The spaces satisfying these three axioms either have at most one line, or are projective spaces of some dimension over a division ring , or are non-Desarguesian planes .
As an example, count the conic sections tangent to five given lines in the projective plane. [4] The conics constitute a projective space of dimension 5, taking their six coefficients as homogeneous coordinates , and five points determine a conic , if the points are in general linear position , as passing through a given point imposes a linear ...
In the case of conic sections (=), there is exactly one point with = and one has a bijection between the circle and the projective line. For n > 2 , {\displaystyle n>2,} there are many points with T n = 0 , {\displaystyle T_{n}=0,} and thus many parameter values for the point A . {\displaystyle A.}