When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degenerate conic - Wikipedia

    en.wikipedia.org/wiki/Degenerate_conic

    This case always occurs as a degenerate conic in a pencil of circles. However, in other contexts it is not considered as a degenerate conic, as its equation is not of degree 2. The case of coincident lines occurs if and only if the rank of the 3×3 matrix is 1; in all other degenerate cases its rank is 2. [3]: p.108

  3. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    If the conic is non-degenerate, the conjugates of a point always form a line and the polarity defined by the conic is a bijection between the points and lines of the extended plane containing the conic (that is, the plane together with the points and line at infinity). If the point p lies on the conic Q, the polar line of p is the tangent line ...

  4. Degeneracy (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(mathematics)

    A degenerate conic is a conic section (a second-degree plane curve, defined by a polynomial equation of degree two) that fails to be an irreducible curve. A point is a degenerate circle, namely one with radius 0. [1] The line is a degenerate case of a parabola if the parabola resides on a tangent plane.

  5. Linear system of conics - Wikipedia

    en.wikipedia.org/wiki/Linear_system_of_conics

    In algebraic geometry, the conic sections in the projective plane form a linear system of dimension five, as one sees by counting the constants in the degree two equations. The condition to pass through a given point P imposes a single linear condition, so that conics C through P form a linear system of dimension 4.

  6. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    Being tangent to five given lines also determines a conic, by projective duality, but from the algebraic point of view tangency to a line is a quadratic constraint, so naive dimension counting yields 2 5 = 32 conics tangent to five given lines, of which 31 must be ascribed to degenerate conics, as described in fudge factors in enumerative ...

  7. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    If the conic is a circle, then another degenerate case says that for a triangle, the three points that appear as the intersection of a side line with the corresponding side line of the Gergonne triangle, are collinear. Six is the minimum number of points on a conic about which special statements can be made, as five points determine a conic.

  8. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    At every point of a point conic there is a unique tangent line, and dually, on every line of a line conic there is a unique point called a point of contact. An important theorem states that the tangent lines of a point conic form a line conic, and dually, the points of contact of a line conic form a point conic. [54]

  9. Quadric - Wikipedia

    en.wikipedia.org/wiki/Quadric

    In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.