When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    In mathematical analysis, the Dirac delta function (or δ distribution), also known as the unit impulse, [1] is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. [2] [3] [4] Thus it can be represented heuristically as

  3. Duhamel's integral - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_integral

    If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)

  4. Singularity function - Wikipedia

    en.wikipedia.org/wiki/Singularity_function

    where: δ(x) is the Dirac delta function, also called the unit impulse. The first derivative of δ(x) is also called the unit doublet. The function () is the Heaviside step function: H(x) = 0 for x < 0 and H(x) = 1 for x > 0. The value of H(0) will depend upon the particular convention chosen for the Heaviside step function.

  5. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    The impulse can be modeled as a Dirac delta function for continuous-time systems, or as the discrete unit sample function for discrete-time systems. The Dirac delta represents the limiting case of a pulse made very short in time while maintaining its area or integral (thus giving an infinitely high peak).

  6. Kronecker delta - Wikipedia

    en.wikipedia.org/wiki/Kronecker_delta

    Unit sample function In the study of digital signal processing (DSP), the unit sample function δ [ n ] {\displaystyle \delta [n]} represents a special case of a 2-dimensional Kronecker delta function δ i j {\displaystyle \delta _{ij}} where the Kronecker indices include the number zero, and where one of the indices is zero.

  7. Dirac comb - Wikipedia

    en.wikipedia.org/wiki/Dirac_comb

    The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula ⁡ := = for some given period . [1]

  8. Finite impulse response - Wikipedia

    en.wikipedia.org/wiki/Finite_impulse_response

    The result is a finite impulse response filter whose frequency response is modified from that of the IIR filter. Multiplying the infinite impulse by the window function in the time domain results in the frequency response of the IIR being convolved with the Fourier transform (or DTFT) of the window function. If the window's main lobe is narrow ...

  9. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.