Ad
related to: t-butyl alcohol oxidation state
Search results
Results From The WOW.Com Content Network
tert-Butyl alcohol is the simplest tertiary alcohol, with a formula of (CH 3) 3 COH (sometimes represented as t-BuOH). Its isomers are 1-butanol, isobutanol, and butan-2-ol. tert-Butyl alcohol is a colorless solid, which melts near room temperature and has a camphor-like odor. It is miscible with water, ethanol and diethyl ether.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Butanol (also called butyl alcohol) is a four-carbon alcohol with a formula of C 4 H 9 O H, which occurs in five isomeric structures (four structural isomers), from a straight-chain primary alcohol to a branched-chain tertiary alcohol; [1] all are a butyl or isobutyl group linked to a hydroxyl group (sometimes represented as BuOH, sec-BuOH, i-BuOH, and t-BuOH).
For oxidations to the aldehydes and ketones, two equivalents of chromic acid oxidize three equivalents of the alcohol: 2 HCrO 4 − + 3 RR'C(OH)H + 8 H + + 4 H 2 O → 2 [Cr(H 2 O) 6] 3+ + 3 RR'CO. For oxidation of primary alcohols to carboxylic acids, 4 equivalents of chromic acid oxidize 3 equivalents of the alcohol. The aldehyde is an ...
The largest use of 1-butanol is as an industrial intermediate, particularly for the manufacture of butyl acetate (itself an artificial flavorant and industrial solvent). It is a petrochemical derived from propylene. Estimated production figures for 1997 are: United States 784,000 tonnes; Western Europe 575,000 tonnes; Japan 225,000 tonnes. [8]
The direct oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R−CH(OH) 2) by reaction with water before it can be further oxidized to the carboxylic acid. Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde hydrates
The Kharasch–Sosnovsky reaction is a method that involves using a copper or cobalt salt as a catalyst to oxidize olefins at the allylic position, subsequently condensing a peroxy ester (e.g. tert-Butyl peroxybenzoate) or a peroxide resulting in the formation of allylic benzoates or alcohols via radical oxidation. [1]
Like other butanols, butan-2-ol has low acute toxicity. The LD 50 is 4400 mg/kg (rat, oral). [6]Several explosions have been reported [7] [8] [9] during the conventional distillation of 2-butanol, apparently due to the buildup of peroxides with the boiling point higher than that of pure alcohol (and therefore concentrating in the still pot during distillation).