Search results
Results From The WOW.Com Content Network
Extracellular matrix has been found to cause regrowth and healing of tissue. Although the mechanism of action by which extracellular matrix promotes constructive remodeling of tissue is still unknown, researchers now believe that Matrix-bound nanovesicles (MBVs) are a key player in the healing process.
The functional part of bone, the bone matrix, is entirely extracellular. The bone matrix consists of protein and mineral. The protein forms the organic matrix. It is synthesized and then the mineral is added. The vast majority of the organic matrix is collagen, which provides tensile strength. The matrix is mineralized by deposition of ...
Endochondral ossification is the process by which most vertebrate axial skeletons form into hardened bones from cartilage. This process begins with a cartilage anlage where chondrocyte cells will congregate and start their maturation process. Once the chondrocytes have fully matured at the desired rate, the cartilage tissue will harden into ...
In biology, matrix (pl.: matrices) is the material (or tissue) in between a eukaryotic organism's cells. The structure of connective tissues is an extracellular matrix. Fingernails and toenails grow from matrices. It is found in various connective tissues. It serves as a jelly-like structure instead of cytoplasm in connective tissue.
Hyaline cartilage is the most common kind of cartilage in the human body. [2] It is primarily composed of type II collagen and proteoglycans. [2] Hyaline cartilage is located in the trachea, nose, epiphyseal plate, sternum, and ribs. [2] Hyaline cartilage is covered externally by a fibrous membrane known as the perichondrium. [2]
Ground substance is an amorphous gel-like substance in the extracellular space of animals that contains all components of the extracellular matrix (ECM) except for fibrous materials such as collagen and elastin. [1] Ground substance is active in the development, movement, and proliferation of tissues, as well as their metabolism.
The extracellular matrix secreted by chondroblasts is composed of fibers, collagen, hyaluronic acid, proteoglycans, glycoproteins, water, and a host of macromolecules. Within finished cartilage, collagen fibers compose 10-20% of the volume, water 65-80%, and the proteoglycan-hyaluronic acid aggregates the remaining portion.
Collagen (/ ˈ k ɒ l ə dʒ ə n /) is the main structural protein in the extracellular matrix of the connective tissues of many animals. It is the most abundant protein in mammals, [1] making up 25% to 35% of protein content. Amino acids are bound together to form a triple helix of elongated fibril [2] known as a collagen helix.