When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Satisfiability modulo theories - Wikipedia

    en.wikipedia.org/wiki/Satisfiability_modulo_theories

    In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.

  3. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n , a modulo n (often abbreviated as a mod n ) is the remainder of the Euclidean division of a by n , where a is the dividend and n is the divisor .

  4. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  5. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8. Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m).

  6. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...

  7. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    The discrete logarithm is just the inverse operation. For example, consider the equation 3 k ≡ 13 (mod 17). From the example above, one solution is k = 4, but it is not the only solution. Since 3 16 ≡ 1 (mod 17)—as follows from Fermat's little theorem—it also follows that if n is an integer then 3 4+16n ≡ 3 4 × (3 16) n ≡ 13 × 1 n ...

  8. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    A variant of the 3-satisfiability problem is the one-in-three 3-SAT (also known variously as 1-in-3-SAT and exactly-1 3-SAT). Given a conjunctive normal form with three literals per clause, the problem is to determine whether there exists a truth assignment to the variables so that each clause has exactly one TRUE literal (and thus exactly two ...

  9. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Because of its trivial nature, the case of congruences modulo 1 is generally ignored and some authors choose not to include the case of n = 1 in theorem statements. Modulo 2 there is only one coprime congruence class, [1], so (/) is the trivial group.